A Simulated Annealing Approach to Bayesian Inference
نویسنده
چکیده
A generic algorithm for the extraction of probabilistic (Bayesian) information about model parameters from data is presented. The algorithm propagates an ensemble of particles in the product space of model parameters and outputs. Each particle update consists of a random jump in parameter space followed by a simulation of a model output and a Metropolis acceptance/rejection step based on a comparison of the simulated output to the data. The distance of a particle to the data is interpreted as an energy and the algorithm is reducing the associated temperature of the ensemble such that entropy production is minimized. If this simulated annealing is not too fast compared to the mixing speed in parameter space, the parameter marginal of the ensemble approaches the Bayesian posterior distribution. Annealing is adaptive and depends on certain extensive thermodynamic quantities that can easily be measured throughout run-time. In the general case, we propose annealing with a constant entropy production rate, which is optimal as long as annealing is not too fast. For the practically relevant special case of no prior knowledge, we derive an optimal fast annealing schedule with a non-constant entropy production rate. The algorithm does not require the calculation of the density of the model likelihood, which makes it interesting for Bayesian parameter inference with stochastic models, whose likelihood functions are typically very high dimensional integrals.
منابع مشابه
Stochastic Annealing for Variational Inference
We empirically evaluate a stochastic annealing strategy for Bayesian posterior optimization with variational inference. Variational inference is a deterministic approach to approximate posterior inference in Bayesian models in which a typically non-convex objective function is locally optimized over the parameters of the approximating distribution. We investigate an annealing method for optimiz...
متن کاملComparison of two QTL mapping approaches based on Bayesian inference using high-dense SNPs markers
To compare different QTL mapping methods, a population with genotypic and phenotypic data was simulated. In Bayesian approach, all information of markers can be used along with combination of distributions of SNP markers. It is assumed that most of the markers (95%) have minor effects and a few numbers of markers (5%) exert major effects. The simulated population included a basic population of ...
متن کاملScalable MAP inference in Bayesian networks based on a Map-Reduce approach
Maximum a posteriori (MAP) inference is a particularly complex type of probabilistic inference in Bayesian networks. It consists of finding the most probable configuration of a set of variables of interest given observations on a collection of other variables. In this paper we study scalable solutions to the MAP problem in hybrid Bayesian networks parameterized using conditional linear Gaussian...
متن کاملAdaptive neuro-fuzzy inference system and neural network in predicting the size of monodisperse silica and process optimization via simulated annealing algorithm
In this study, Back-propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS) methods were applied to estimate the particle size of silica prepared by sol-gel technique. Simulated annealing algorithm (SAA) employed to determine the optimum practical parameters of the silica production. Accordingly, the process parameters, i.e. tetraethyl orthosilicate (TEOS), H2O and N...
متن کاملBayesian approach to inference of population structure
Methods of inferring the population structure, its applications in identifying disease models as well as foresighting the physical and mental situation of human beings have been finding ever-increasing importance. In this article, first, motivation and significance of studying the problem of population structure is explained. In the next section, the applications of inference of p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1509.05315 شماره
صفحات -
تاریخ انتشار 2015